Written test Statistics for Electronics (Tuesday group 17.05)

Task 1: Given a 3 element set $\Omega=\{x, y, z\}$
a) equipp Ω with the structure of a probability space by assigning probabilities to the elementary events.
b) Define a random variable X on the probability space Ω (from task a) such that X has expectation zero and variance one.
c) Find two independent events A and B on Ω.
d) Find two disjoint events C and D on Ω.

Task 2: given a continuos random variable X with values in $[0, \infty)$ and density $f_{X}(z)=\left\{\left.\begin{array}{r}3 e^{-3 z} \text { for } z \geq 0 \\ 0 \text { for } z<0\end{array} \right\rvert\,\right.$. Compute the following:
a) The cumulative distribution function F of the random variable X and sketch the graphs of F and f
d) The probability $P\{-1 \leq X \leq 1\}$ that the random variable has value in the interval $[-1,1]$.
c) The probability $P\{-2 \leq X \leq-1\}$ that the random variable has value in the interval $[-2,-1]$
d) The probability $P\{X=5\}$

Task 3: Given a sequence of iid random variables $\left\{X_{i}\right\}_{1=1}^{n}$ with $X_{i} \in\{-1,+1\}$ and $P\left(X_{i}=1\right)=\frac{1}{2}$
a) Use the central limit theorem to give an approximate upper bound on the probability that $\sum_{i=1}^{90000} X_{i} \geq$ 600. List of values for the cumulative distribution function $\Phi(z)$ of the standard normal distribution (expectation zero and variance 1):
$\Phi(1)=0.84134 ; \Phi(1.5)=0.93319 ; \Phi(2)=0.97725 ; \Phi(2.5)=0.99379 ; \Phi(3)=0.99865 ; \Phi(3.5)=$ $0.99977 ; \Phi(4)=0.99997$
b) (optional): Use the Berry- Esseen theorem to estimate the maximal error made in the approximate solution to the previous task 7a

Hint : The Berry-Esseen theorem states the following: Given a sequence of iid random variables $\left\{Y_{i}\right\}_{i=1}^{n}$ with $\mathbb{E} Y_{i}=0, \operatorname{Var}\left(Y_{i}\right)=\sigma^{2}$ and $\rho=\mathbb{E}\left(\left|Y_{i}\right|^{3}\right)$. Let further F_{n} be the cumulative distribution function (cdf) of $\frac{1}{\sigma \sqrt{n}}\left(\sum_{i=1}^{n} Y_{i}\right)$ and let Φ be the cdf of the standard normal distribution $\mathcal{N}(0,1)$. Then the following inequality holds for every $n \geq 1$:

$$
\begin{equation*}
\sup _{x}\left|F_{n}(x)-\Phi(x)\right| \leq \frac{1}{2} \cdot \frac{\rho}{\sigma^{3} \sqrt{n}} \tag{1}
\end{equation*}
$$

Task 4: Given two random variables $X \geq 0$ and $Y \geq 0$ with $E X=1, E Y=2$ and $\operatorname{Var} X=1$, $\operatorname{Var} Y=3$
a) Use the Markov inequality to estimate $\operatorname{Pr}\{3 X+2 Y \geq 70\}$
b) Compute the variance of $2 X-2 Y$ under the assumption that X and Y are independent

Task 5 : Given 5 independent samples of a random variable X. The sample values are $\{1 ; 3 ; 2 ; 1 ; 4\}$. It is known that the random variable X has a density of the form $\varphi(x)=a e^{-a x}$ for $x \geq 0$ and zero otherwise . The parameter $a>0$ is unknown. Find the maximum likelihood estimator $\tilde{a}_{M L}$ of the parameter a with respect to the above sample values.

