Task 1: Given a 3 element set $\Omega = \{x, y, z\}$

a) equipp Ω with the structure of a probability space by assigning probabilities to the elementary events.

b) Define a random variable X on the probability space Ω (from task a) such that X has expectation zero and variance one.

c) Find two independent events A and B on Ω .

d) Find two disjoint events C and D on Ω .

Task 2: given a continuos random variable X with values in $[0, \infty)$ and density $f_X(z) = \begin{cases} 3e^{-3z} \text{ for } z \ge 0 \\ 0 \text{ for } z < 0 \end{cases}$. Compute the following:

Compute the following:

- a) The cumulative distribution function F of the random variable X and sketch the graphs of F and f
- d) The probability $P\{-1 \le X \le 1\}$ that the random variable has value in the interval [-1, 1].

c) The probability $P\{-2 \le X \le -1\}$ that the random variable has value in the interval [-2, -1]

d) The probability $P\{X=5\}$

Task 3: Given a sequence of iid random variables $\{X_i\}_{i=1}^n$ with $X_i \in \{-1, +1\}$ and $P(X_i = 1) = \frac{1}{2}$

a) Use the central limit theorem to give an approximate upper bound on the probability that $\sum_{i=1}^{50000} X_i \ge 1$

600. List of values for the cumulative distribution function $\Phi(z)$ of the standard normal distribution (expectation zero and variance 1):

 $\Phi(1) = 0.84134; \Phi(1.5) = 0.93319; \Phi(2) = 0.97725; \Phi(2.5) = 0.99379; \Phi(3) = 0.99865; \Phi(3.5) = 0.99977; \Phi(4) = 0.99997$

b) (optional): Use the Berry- Esseen theorem to estimate the maximal error made in the approximate solution to the previous task 7a

Hint : The Berry-Esseen theorem states the following: Given a sequence of iid random variables $\{Y_i\}_{i=1}^n$ with $\mathbb{E}Y_i = 0$, $Var(Y_i) = \sigma^2$ and $\rho = \mathbb{E}\left(|Y_i|^3\right)$. Let further F_n be the cumulative distribution function (cdf) of $\frac{1}{\sigma\sqrt{n}}\left(\sum_{i=1}^n Y_i\right)$ and let Φ be the cdf of the standard normal distribution $\mathcal{N}(0,1)$. Then the following inequality holds for every $n \ge 1$:

$$\sup_{x} |F_n(x) - \Phi(x)| \le \frac{1}{2} \cdot \frac{\rho}{\sigma^3 \sqrt{n}}$$
(1)

Task 4: Given two random variables $X \ge 0$ and $Y \ge 0$ with EX = 1, EY = 2 and VarX = 1, VarY = 3

a) Use the Markov inequality to estimate $\Pr\{3X + 2Y \ge 70\}$

b) Compute the variance of 2X - 2Y under the assumption that X and Y are independent

Task 5 : Given 5 independent samples of a random variable X. The sample values are $\{1; 3; 2; 1; 4\}$. It is known that the random variable X has a density of the form $\varphi(x) = ae^{-ax}$ for $x \ge 0$ and zero otherwise. . The parameter a > 0 is unknown. Find the maximum likelihood estimator \tilde{a}_{ML} of the parameter a with respect to the above sample values.